
DOCUMENT RESUME

ED 057 601 EM 009 445

TITLE Project Solo; Newsletter Number Six.
INSTITUTION Pittsburgh Univ., Pa. Dept. of Computer Science.
SPONS AGENCY National Science Foundacion, Washington, D.C.
PUB DAT7 2 Dec 70
NOTE 26p.; See also ED 053 566

EDRS PRICE MF-$0.65 HC-$'3.29
DESCRIPTORS *Computer Assisted Instruction; *Computer Programs;

*Programing Languages
IDENTIFIERS New BASIC (Programming Language); *Project Solo

ABSTRACT
A summary of the current features of the New BASIC

System pumn as used by Project Solo is presented. A program is given
which provides drill-and-practice routine where the random generator
output is biased to favor selection of problems on which the student
needs most practice. The program shows the use of NBS string
functions to find a numerical quantity in a string response. Another
program demonstrates the use of multiple statements in NBS. (JY)

Th7

. .

NIXPERIMENTAWItEGION'ALCOMPUTING:FOIesEcaNpAq,:spj90!::=SYSTEMS--,

U.S. DEPARTMENT OF HEALTH.
EDUCATION & WELFARE
'IFFICE OF EDUCATION

THIS :::',CUMENT HAS BEEN REPRO.
PUED E)IACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG-
INATING IT. POINTS OF VIEW OR OPIN-
IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY.

Newsletter No. 6 December 2, 1970

Teacher Meeting.

There will be a meeting at the University of Pittsburgh in 825 Cathedral
of Learning on Wednesday, December 16, at 4:00 p.m. The agenda will include
(a) A gathering of your comments and suggestions on any changes we should
consider in present procedures- (except--yes, we know you want more termin-.
als and timeno, we have no extra money!), (b) Some observations from our
side of the fence on the usage we have observed, (c) A discussion of what we

'should propose to the school system and NSF for next year, and the justifica-
tions you see for such a request, (d) A showing of a film on H. Dean Brown's
work in using computers in learning environments for young 'Children.

Summary of NBS

We:are enclosing part of section 9 of the NES primer. It is a suxnmary
of the current features in NBS. As will be apparent from the length of the list,
NES is growing to be an extremely comprehensive language; there will be ad-
ditional pages for the primer which demonstrate the use of new features com-
ing your Way through the newsletter. Later this year you will receive small
pocket-size cards summarizing NES which can be distributed to your students.
In the meantime, extra copies of the full page form of the summary are avail-
able for insertion in the primer.

M;altiple Statements

One of the many unique features of NES is its ability to handle multiple
statements. We are enclosing two sheets numbered 7-2 and 7-3 (aIso for in-
sertion in the primer) which illustrate the use of such statements. T7.±.e sec-
ond example (bottom of page 7-2) is a program that teachers may find useful
in posting the results of quizzes, tests, etc. It is on file, and you can call
it by typing:

J NES
>RUN 166TD /GRADE/

PRINT in FORMAT; New NES Library Functions

Sheet 8-2 shows,.two examples using the new "picture" format feature of
NBS for precise print control. The full set of format Codes is listed on sheet
9-7. Examples of use of library functions recently added to NES are shown on
sheets 6-5, 6-6, and 6-7. Students of probability who. wish to uSe the DICE
program on page 6-5 can type:

Lti
>RUN 104C /DICE/

EXAMPLE OF A DRILL AND PRACTICE ROUTINE WHERE THE
RANDOM GENERATOR OUTPUT IS BIASED TO FAVOR SELECTION
OF PROBLEMS ON WHICH THE STUDENT NEEDS MOST PRACTICE

THIS EXAMPLE ALSO ILLUSTRATES USE OF NBS STRING FUNCTIONS
TO FIND THE NUMERICAL QUANTITIES IN A STRING RESPONSE

>RUN
DRILL ON COMPLEX ARITHMETIC

ALL ANSwERS MUST PE IN 1HE FORM 3+51, 1HA1 IS,
CON1AP4 A HEAL Pl\RT, A SIGN, AN IMAGINARY
PART, AND THE LETTER I. ALWAYS TYPE 0 FOR ZERO
EXAMPLES--CORRECT FORM: -2+01 WRONG FORM: -2

0+31 31
0+01 0

WHAT IS THE SUM OF-3-2I AND -3481
?-6+6I
GOOD
WHAT IS THE SUM OF +4+71 AND -1-51
?3+2I
RIGHT
WHAT IS THE PRODUCT OF +7-41 AND +8-51
?56+20I
NO, THE PRODUCT IS +36-671
WHAT IS THE PRODUCT OF -3+41 AND +5+31
?-15+7I
NO, THE PRODUCT IS -27+111
WHAT IS THE PRODUCT OF +4+71 AND -1+41
? $6.-

NO, THE PRODUCT IS -32+91
WHAT IS THE SUM OF -3+81 AND +5+11
?-3+9I
GOOD
WHAT IS THE PRODUCT OF +1+21 AND -6-41
?7-6I
NO, THE PRODUCT IS +2-161
WHAT IS THE SUM OF +1-41 AND +6+61
? 7+2I
CORRECT
WHAT IS THE PRODUCT OF +6+01 AND +3-21
26-81
NO, THE PRODUCT IS +18-12I
WHAT IS THE PRODUCT OF +3-21 AND +2+81
?6-8I
NO, THE PRODUCT IS +22+201
Nenu HAD 4 ADDITION PROBLEMS CORRECT,
YOU HAD 0 MULTIPLICATION PROBLEMS RIGHT.

YOUR GRADE IN ADDITION IS 100%
YOUR GRADE IN MULTIPLICATION IS 0%

O VERALL GRADE IS 40.CW

SO LONG

Note that the program
starts to favor multi-
plication after it is
evident that the student
can handle addition.

The grades at the end
effectively prescribe
special tutoring .for
him in multiplication.

A more advanced version
of this program automat-
ically branches to such
tutoring on the basis of
this history.

>LISTNH

5 VAR=7FRO
10 A="'WHaT IS THE SUM OF ' SD SD'I AND ' SD SD'I,/"
20 L-"'="'NO, THE SUM IS ' SOD SOD'I'/"
30 CF,="'11HAT IS 1HF PRODUCE' OF ' SD SD'I AND ' SD SD'I'I"
40 Di="'NO, THE PRODUCT IS ' SOOD S001) 'I'/"
110 PR. "DRILL ON COmPLEX APIIHMFIIC"
112 PR. PR."6-LL ANSWERS MUSE' BF IN THE FORM 3+51, THAT ISy"
114 PR."CONII\IN A REAL PART, A SION, AN IMAGINARY"
)15 RR. "PART, AND IHE LETTER I. ALWAYS IYPE 0 EZR ZERO"
117 PR."EXAMPLESCORRECT FORM: -2+01 WRONG FORM: -2"
118 PR." 0+31 31"
119 PR." 0E01 0" PR.
120 LEI N=N+1
12.5 IF N>10 LET N=N-1 G010 500
130 R=NUM(10) LFT 1)=NUM(19)-10 LET B=NUM(19)-10
LET C=NUM(19)-10 LEI D=NUM(19)-10
140 IF R<(7+M-S) GOTO 300 ELSE GOTO 400
300 PRINT IN FORM Ac:A,B,C0D
310 LET E=A+C LFT F=B+D
320 GOSUB 600
370 IF ABS(E-R).001 AND ABS(F-I)<.001 CALL REINy
LET S=S+1 GOTO 120
380 PRINT IN FORM PS:E,F LFT V1=W-1-1 GOTO 120
400 PRINT IN FORM CS:A:R:C:D
410 LFT F=A-C-BiD LET F=A1=D+B*C
420 GOSUR 600
470 IF ARS(E-R).001 AND APS(F-I)<.001 CALL REIN,
LET M=M+1 GOTO 120
480 PRINT IN FORM DS:Eyr GOTO 120
500 PR. "YOU HAD ":S:" ADDITION PROPLEMS CORRECT,"
510 PR. "YOU HAD ":M:" MULTIPLICATION PROBLEMS RIGHT."
520 P. PR. "YOUR GRADE IN ADDITION IS ":(S''100.)/(S+W):"A"
530 P. "YOUR GRADE IN MULTIPLICATION IS ":(M*100.)/(N-S-W):"Z"
540 P. PR. "OVERALL GRADE IS ":((S+M):6100.)/N:"X"
550 P. PR. "SO LONG"
560 END
600 INPUT RS
610 LEI R=VAL(R$)
615 LET R(B=RIGHT(RS,LENGTH(R$)-1)
620 LET X1=INDEMRS,"+") LET X2=I4DEX(RS,"-")
630 LEY X=MAX(X1,X2)
640 LET I=VAL(RIGHI(1S,LENGTH(R$)-X+1))
650 RETURN

L 140 REMARKS: The formula 7+M-S initially biases the random
selection of addition problems; as a favorable response
to this kind of problem builds up (S increasing), the
bias shifts to multiplicaticn. M provides the converse
effect for multiplication.

SUBROUTINE 600 extracts the numerical value of the real and imaginary
parts of the response R$ which is initially accepted as a string.

LOGOUT

3

6-5

USING THE RANDOM GENERATOR "NUM" FOR INDEX CONTROL

The following example shows how NUM can be used to set indices
(X and Y in this case) ,so that information stored in arrays is
randomly selected. As the example shows, this information can
be alphanumeric, since NBS allows string arrays

2 A3;(1)="# #" LET C$(1)=AS(1) LET B$(2)=A$(1) LET B$(4)=A$(1)
4 A$(2)="#. #" LET A$(3)=A$(2)
6 B5(1)="# #" LET B$(3=135(1) LET B$(5)=B$(1)

C$(3)="# .#" LET C$(2)=C$(3)
10 AS(4)="#. .#" LET C$(4)=A$(4) LET AS(5)=C$(4)
12 C$(5)=A$(4) LET A$(6)=A$(4) LET BS(6)=A$(4) LET C$(6)=A$(4)
40 PR."DICE TOSS--HOW MANY TOSSES DO YOU WISH TO SEE":
41 INPUT N
42 FOR I=1 TO N
43 LET X=NUM(6)
44 LET Y=NUM(6)
45 PR. PR.
50 10R."#######"."#######"
55 PR. AS(X),A$(Y)
60 PR. RS(X).B$(Y)
65 PR. C$(X).C$CY)
70 PR. "#######",PR."#######",PR.X+Y
75 NEXT I
100 END

>RUN

DICE TOSS--HOW MANY TOSSES DO YOU WISH TO SEEA

####### #######
#. .#
#
#. .#
#######

#######

#

. .# # .#
#######

####### #######
#. .#
#
#. .
######

#######
#
#
. .#
#######

5

6

7

6

6-6

USE OF MOD(X,Y) [= the remainder from the division x/Y]

Example 1:

10 REm 'MOD' USED TO 'PULL OFF' LAST DIGITS OF A NUMBER
20 X=NUm(999) PR.X;MOD(X,100)3M0D(X,10) FOR 1=1 TO 10
30 END

>RUN
414 14 4
299 99 9
150 50 0
63 63 3
292 92 2
360 60 0
680 80 0
809 9 9
936 36 6
612 12 2

Example 2:

AS K=1,2, ...N

10
20
30
40
50
51
55
56
57
60
70
75
80
90

REM MOD FCN USED FOR CYCLIC CONTROL
PR. "TYPE AN INTEGER":
INPUT N
LET N=INTCABS(MOD(N,15)))
REM NO MATTER WHAT THE USER TYPES,IT IS CONVERTED
REM TO A POSITIVE INTEGER N, WHERE 0<=N<=14
PR."
PR." K";" X";" Y"I" AS";"(N=":N:")"
PR."
FOR K=1 TO N
LET X=M0DCKa3) LET Y=MOD(K-i,3)+1
REM "I" WILL TAKE ON THE VAUJES 1,203 CYCLICALLY
ON Y GOSUB 201,202:203
PR. K3X,YIA$

100 NEXT K
110 END
201 LET A$="OH" RETURN
202 LET AS="YOU" RETURN
203 LET A$="KID" RETURN

>RUN
TYPE AN INTEGER?-56.3

X V AS (N= 11)

1 1 OH
2 2 2 YOU
3 0 3 KID
4 1 1 OH
5 2 2 YOU
6 0 3 KID
7 1 1 OH
8 2 2 YOU
9 0 3 KID
10 1 1 OH
11 2 2 YOU

6-7

EXAMPLES USING THE STRING FUNCTIONS

VAL, INDEX, LEFT, RIGHT, LENGTH, AND SUBSTR

Example 1

!REMARKS MADE AFTER10 PRINT "START"
20 !A '!' SYMBOL
30 !WILL LIST ONLY
40 C$="67.5 GRAMS"
50 C=VAL(C$) !VAL(C$) RETURNS THE NUMERIC
60 IF C>50 LET M=C-50 !VALUE OF NUMERIC SYMBOLS IN C$
70 PR. C;M:C$!OCCURING BEFORE THE 'G' IN GRAMS
80 END !ALLOWING CALCULATION WITH C

>RUN
START
67.5

Example 2

17.5 67.5 GRAMS

> 10 INPUT A$
>20 X = INDEX(A$." ")
>30 PRINT X
> 40 B$ = LEFT(A$,X)
> 50 PRINT 8$
>60 END
> RUN

?WHO AM I
4

WHOw

>35 X = X-1
>RUN
?WHAT ARE YOU
5

WHAT

Example 3

INDEX(A$," ") returns
the position of the character
between quotes (in this case
a space) in the string A$

In the first innut example,
the INDEX is 4, since the
first rpace in WHO AM I
is in the 4th position.

The function LEFT(A$,X)
returns the first X characters
of A$. RIGHT(A$,X) would
return the last X characters.

..10 PR."WHAT45 YOUR NAME": INPUT NS
>20 LET N=LENGTHCNS)
> 30 LET M$=SUBSTR(NS,INT(N/2)3)
2.40 pR."GOOD GRIEF! THE 3 MIDDLE LETTERS
>SO PR."OF YOUR NAME SPELL "2M$
>RUN

WHAT IS YOUR NAME?HORATIO
GOOD GRIEF! THE 3 MIDDLE LETTERS
OF YOUR NAME SPELL RAT

N=7 for HORATIO.
M$ contains 3
characters from N$
starting at position
INT(N/2).

7-2

MULTIPLE STATEMENTS IN NBS

NBS allows several statements to be placed on a line. Use of
this feature can make programs more compact, more readable, and
more e:Eicient. Square brackets are used in multiple statements
to limit the scope of iterations controlled by suffixes.

EXAMPLE 1: Here is a one-line program to print all possible
products of integral powers of 2 up to 8*8.

-NBS
>10 1=2 [J=2 [PR.I,J,I*J LEC J=J*2 WHILE J<9] LET I=I*2 WHILE I<9]

>RUN
2
2
2

4

4

4

8
8
8

2

4
8

2
4
8

2

4
8

4

8
16
8

16
32
16
32
64

10 REM SANE PROGRAM IN OLD BASIC
20 LET 1=2
40 LET J=2
50 PRINT I,J,I*J
60 LET J=2*J
70 IF J<9 GOTO 50
80 LET I=2*I
90 IF I<9 GOTO 40
100 END

EXAMPLE 2: The following program plots a bar graph showing ;:he
distribution of test grades by percentiles. It also gives the
raw mean, and the mean based on 100%. Line 170 illustrates the
ability of multiple statements to alter the return of GOSUB (to

230 instead of to 180 in this case).

100 VAR=ZERO DIM P(10)
110 PR."WHAT IS MAXIMUM GRADE POSSIBLE":
120 INPUT M
130 PR. "ENTER A GRADE AFTER EACH ?'."
140 PR. "ENTER 9999 WHEN FINIS4ED."
150 PR.
160 INPUT G
170 IF G>9000 GOSUB 410 GOTO 230
180 IF G>144 PRINT "GRADE EXCEEDS MAX." GOTO 160
190 LET R1=Ri+G LET R2=R2+G*G.
200 LET G=G*100/M LET S1=S1+G LET S2=S2+G*G
210 IF G>99.9 LE7 G=G-1
220 LET G=G/10+1 LET- P(G)=P(G)+1 LET N=N+1 GOTO 160
230 PR. PR.I
240 FOR I=1 TO 10
250 PR. TAB(5): CPR."<*":FOR J=1 TO P(I)

270 PR. I*10
290 NEXT I
300 PR. GOSUB 410
320 PR. "THE UNSCALED MEAN IS "IRI/N
330 D=SORT((R2-CRI*R1/N))/(N-1))
340 PR. "THE UNSCALED STANDARD DEVIATION IS ":D
350 GOSUB 410
370 PR. "THE SCALED MEAN IS "SS1/N
380 D=SORT((S2-(S1*S1/N))/(N-1))
190 PR. "THE.SCALED STANDARD DEVIATION IS ":D
395 GOSUB 410
400 END
410 PR, CPR."=-":FOR 0=1 TO 303 PR. RETURN'

3
!NOTE: ONE EXTRA
!°13R.' IS NEEDED
!TO CANCEL THE
:!EFFECT OF THE
!LAST ':' GENFR-
!ATED IN 'FOR'
!LOOPS OF THIS
!TYPEt

, Sample Run:

WHAT IS MAXIMUM GRADE POSSIPLE?67
ENTER A GRADE AFTER EACH '7'.

ENTER 9999 WHEN FINISHED.

? 23
? 34
? 36
41

? 46
? 78
GRADE EXCEEDS MAX.
? 50
? 28
? 58
? 16
? 24
? 28

? 30
? 42
? 39
? 45
? 48
? 49
? 40
? 50
7c6
756
741
? 42
? 57

? 58
? 59
? 53
? 61

? 62
747
? 34
?38
?.41

? 42
? 47
? 51

? 53

?59
? 57
? 34
?39
? 42
? 413

149
?9999

0

10

20

30

40

50

60

70

80

90

< * >

7- 3

<*><*><*>

<*><*><*><*><*><*<*><*>

<*><*><*<*><*><*><*><*><*>

<*>4*).4*><*><*a,.t*:.4*><*<*><*><*s

<*>y*><*>4*><*><*><*>4*>

<*><*>
100

THE UNSCALED MEAN IS 44.47727273
THE UNSCALED STANDARD DEVIATION IS 11.0442843

THE SCALED MEAN IS 66.38398914
THE SCALED STANDARD DEVIATION IS 16.48400642

8

8-2

EXAMPLES USING "PRINT IN FORM"

Example 1:

10 LFT X=6.08324956
PO AT="SD.DDDDDREIR8 -D.DDRBBRBBR $***.**BRBRB DDD.DDD,DDD/"
30 PRINT IN FORM A$:X.X.X,X*1E8
40 REM NOTE VARIABLFS IN PRINT STATEMENT MATCH FIELDS IN A$
50 REM SPACES SEPARATE FIELDS IN AS. SLASH / AT END CAUSES LINE FEED

RUN
+6.08325 6.08 $**6008 608.324,956

Example 2: Note :that 2(SD.DDB) is equivalent to SD.DDB SD.DDB

100 A$="2(SD.DDR)
110 B$="2(SD.DDB)

120 C$="2(SD.DDB)
130 R=I
140 PRINT " X Y SIN COS
150 FOR X=1 BY -.1 WHILE X>-1.1
160 IF ABS(X)>=1 GOTO 280
170 Y=ARS(SORT(R*R-X*X))
180 IF ARS(X)<.005 GOTO 250
190 IF ABS(Y).005 GOTO 260
200 PRINT IN FORM POS:X:Y:Y/R:X/R:Y/X:X/Y:R/X:R/Y
210 NEXT X
230 END
240 GOTO 140
250 X=0 .

260 PRINT IN FORM BS:X:Y:Y/R:X/R:X/Y:R/Y
270 GOTO 210
280 Y=0
290 PRTNT IN FORM CS:X:Y:Y/R2X/R:Y/X:R/X
300 GOTO 210

2(SD.DDDR) 3(5DD.DDDB) S0D.DDDB/"
2(SD.DDDB) UNDEF ' SDD.DDDR 0 UNDEF ' SDD.DDOP/il

2(SD.DDDR) SDD.DDDB 6 UNDEF SDD.DDDE0 UNDEF

TAN COT SEC

>RUN

X Y SIN COS TAN COT SEC CSC
+1.00 +0.00 +0..000 +1.000 4-00.000 UNDEF +01.000 UNDEF
+0.90 +0.44 +0.436 +0.900 +00.484 +02.065 +01.111 +02.294
+0.80 +0.60 +0.600 .7-0.800 +00.750 +01.333 +01.250 +01.667
+0.70 +0.71 +0.714 +0.700 +01.020 q10.980 +01.429 +01400
+0.60 +0.80 +0.800 +0.600 +01.333 +00.750 +01.667 +01.250
+0.50 +0.87 +0.866 +0.500 +01.732 +00.577.4-02.000 +01.155
+0.40 +0.92 +0.917 +0.400 +02.291 t00.436 +02.500 +01.091
+0.30 +0.95 +0.954 +0.300 +03.180 +00.314 +03.333 +01!048
+0.20 +0.98 +0.980 +0.200 +04.899 +00.204 +05.000 +01.021
+0.10 +0.99 +0.995 +0.100 +09.950 +00.101 +10.000 .+01.005
+0.00 +1.00 +1.000 40.000 UNDEF +.00.000 UNDEF +01.000
-0.10 +0.99 +0.995 -0.100 -09.950 -00.101 -10.000 +01..005
-0.20 +0.98 +0.980 -0.200 -04.899 -00.004 -05.000 +01.021
-0.30 +0.95 +0.954 r0.300 ,-03A180 .00.314 -03.333 +01.048
-0.40 +0.92 +G.917 -0.400 -02.291 -00.436 -02.500 +01.091
-0.50 +0.87 +0.866 -0.500 -01.732 -00.577 -,.02.000 +01.155
-0.60 +0.80 +0.800 -0.600 -01.333 -00.750 -01A667 +01.250
-0.70 +0.71 +0.714 -0.700 -01.020 -00.980 -01.429 +01.400
-0.80 +0.60 +0.600 -0.800 -00.750 -.01.333 -01.250 +01.667
-0.90 +0.44 +0.436 -0.900 -00.484 -02.065 -01.111 +02.294
-1.00 +0.00'4-0.000 -1.000 +00.000 UNDEF' -01.000 UNDEF

CSC"

SUMMARY OF NBS

Abbreviations

Lower case symbols specify the following:

nv
sv

le
ne
se

any variable
numeric variable
string variable
any expression
logical expression
numeric expression
string expression

OPERATORS

or

MOD

<=

>.
<>

.#
NOT
AND
OR
XOR
BUT
IMP
EQU
BAN

* *

or #

BOR

BEX

ln
stmt

any number
line number
any statement
any single letter
or array name
(without subscript)
string array name
array name (x or y)

PRECEDENCE

Exponentiation
Multiplication
Division
Addition or string concatenation
Subtraction or negation
Modulo
Less than
Less than or equal to
Equal to
Greater than
Greater than or equal to
Not equal to
Very much less than
Very much greater than
Approximately equal to
Logical complement
Logical conjunction
Logical disjunction
Logical exclusive OR
Logical conjunction
Logical implication
Logical equivalence
Binary conjunction (used in INTEGER
mode only)
Binary disjunction (used in INTEGER
mode only)
Binary exclusive OR (used in INTEGER
mode only)

1
2
2
3

3

1
2

3
3

4

9-2

PROGRAM STATEMENTS

These statements are listed in alphabetic order. The letters
D and I at the left indicate whether statements :may be used
in DIRECT or INDIRECT mode respectively. Note that in NEW-
BASIC more than one statement may be written on a line and
that square brackets may be used to group statements for
execution in a special order.

D I ACCEPT See INPUT.

APPEND /file/ Merges the named file and the
current program. When duplicate

I APPEND yfiler line numbers exist, lines in the
named file replace those in the
current program. After the indirect
APPEND is completed, execution
resumes at the next statement
in sequence after the APPEND
statement.

D I BASE n Causes the subscripts of arrays
not yet dimensioned to begin at
the number specified (n) rather
than at 1.

D I CALL subroutine name Calls a NEWBASIC subroutine.

D I CALL FNx(argument list) Calls a programmer-defined
function-subroutine.

D I CALL $ ubroutine name Calls an XTRAN subroutine. The
$ is required only if the name
corresponds to a key word in
NEWBASIC.

D I CLOSE ne Closes data file opened for
input or output as file ne.

I DATA n
11

n
2'

Stores the numbers which will
be used as the values of the
variables named in a READ
statement.

I DEF FNx (argument list)=e Defines a function.

DEF FNx(argument list) Defines a multiple-line sub-
. routine-function. The argument

list contains an arbitrary number
of variables. The function may

FNx=e include any number of arguments.
RETURN The definition must end with (1)

(cont. next pg.)

DEF FNx(argument list)
(cont.)

D I DEMAND

D I DIM z(ne
1'

ne
2'

ne3" ..)

D I DISPLAY

I END

D* I FOR v=ne
D* I FOR v=ne 1 TO ne
D* I FOR v=ne

1
1 TO e

2
2 STEP ne

3
n

D* I FOR v=nP.
1

BY ne
3
TO ne

2

D* I FOR v=ne ne ne
1, 2' 3'

D* I FOR v=ne
1

STEP ne
2

9-3

a statement for returning the
value of the function and (2)
a RETURN statement.

See INPUT.

Reserves array storage for arrays
whose dimensions are given by nel,
ne

2'
ne

3
ese

See PRINT.

Terminates a program. END should
be used to separate the main pro-
gram from any functions or sub-
routines that follow it.

Causes execution to loop through
a set of operations until the
conditions specified are true.
Incrementation is by one unless
a STEP is specified (ne3). Note
that the words STEP and BY are
interchangeable. A NEXT state-
ment terminates the FOR loop ex-
cept when used as a suffix.
Causes execution to loop through
a set of operations for the
specified values.

Causes execution to loop
indefinitely.

D* I FOR v=ne UNTIL le Causes execution to loop through
D* I FOR v=ne UNTIL le STEP ne

2
a set of operations until expres-

1 sion le is true.

D* I FOR v=ne
1
WHILE le BY ne2

D* I FOR v=ne
1
by ne

2
WHILE le

D* I FOR v=ne ne .STEP ne
1, 2'

.
3

TO ne 4" WHILE le

D I GOTO ln

Causes execution to loop through
a set of operations until the
expi'ession specified is false.

Transfers execution to statement
ln rather than continuing execu-
tion with the next statement in
sequence.

*FOR is valid in direct mode when used as a suffix.
(See page 9-10)

D I GOSUB ln

I IF le THEN ln
I IF le [THEN] GOTO ln
I IF le [THEN] GOSUB ln

I IF le THEN stmt

IF
IF
IF

I IF

le
le
le
l

THEN
THEN
THEN

ln
ln 1

ln 1
1

ELSE
ELSE
ELSE

ln,)
GOTO
GOSUB

1e 2THEN stmt
1
ELSE

D I INPUT v v .l' 2'

D I INPUT FROM ne:v, ,v

ln
2

stmt
2

.

D I INPUT FROM nel at ne2:

111,1721...

9-4

Transfers execution to a sub-
program beginning at statement
ln. The subprogram must end
with a RETURN statement which
transfers execution back to the
statement in the main program
following the GOSUB.*

Transfers execution to state-
ment ln if the expression
specified by le is true.

Executes the statement specified
if the expression le is true.

An IF-THEN statement may option-
ally be followed by an ELSE
clause which will be executed
if the relation specified is
false. When the IF condition
is true, the ELSE clause is
ignored and the THEN clause is
executed. Note that a THEN or
an ELSE clause may also include
a suffix modifier.

Enters data during the running
of a program. When an INPUT
statement is encountered, exe-
cution halts and NEWBASIC prints
a ? indicating that it is waiting
for one or more values to be enter-
ed from the terminal. The values
entered are assigned to the var-
iables listed (v1,v2,...). Note
that ACCEPT or DEMARD may be used
instead of the word INPUT.

Enters data from the symbolic or
binary file which has been opened
as unit ne. The values read from
the file are assigned to the spec-
ified variables.

Enters data from a random bi-
nary file opened as unit nel,
starting at location ne2 on the
file.

This sequence can be altered by using the multiple statement:
(IF le) GOSUB lni GOTO 1n2

This statement transfers execution to statement lni. When the
RETURN is encountered, transfer is then made to statement 1n2.

D I INPUT IN FORM se:v v2' ...
D I INPUT FROM ne IN FoRM se:

vl v2

D I LET v=e

I LINK '/file/'

LOAD /file/

I LOAD 'Ifile/'

D I LOGOUT

I NEXT v
I NEXT ln

I NORMAL MODE IS x

D I ON ne GOTO
ON ne GOSUB ln ln

1, 2,-

9-5

Used to innut the values of
variables or expressions . in
special format for use with
a PRINT IN FORM statement.
(See PRINT.)

Assigns values to program var-
iables. The word LET is optional.
Alternate forms are available for
multiple assignment [LET vl÷v2÷e]
and assignment of a logical value
[LET v = (ne1=ne2)].

Deletes the current program, sav-
ing the values of the variables,
and begins execution at the first
statement of the specified file.

Deletes the current program and
variables. In indirect mode it
starts execution at the first
statement of the program specified.

Logs the user off the system.
(Same as the EXECUTIVE LOGOUT
command)

Terminates a loop initiated by
a FOR statement. The v (1n)
must correspond to the variable
(line number) of the FOR state-
ment. The line number parameter
is used to identify FOR-NEXT
pairs in nested loops.

Sets the implicit mode of var-
iables to the specified (COMPLEX,
INTEGER, REAL, DOUBLE INTEGER,
DOUBLE REAL or STRING). Var-
iables whose names contain a $
will remain string variables
until explicitly redefined. Un-
less specified, normal mode is
REAL.

TranSfers execution to statement
dePending:On the:value of ne .

If theinteger part of :ne is 1,
.

execution transfers to ln if,

1n2, etc.

9-6

D I ON ENDFILE (ne) stmt Executes the statement specified
when the END OF FILE ne is read.

D I ON ERROR GOTO ln
D I ON ESCAPE GOTO ln

D I OPEN
D I OPEN

Transfers execution to statement
ln when an error or an escape is
encountered.

"/file/",INPUT,ne Opens a symbolic or binary file
/file/,OUTPUT BINARY,ne for input or output. Delimiting

quotation marks may be used with
the file name but are optional
in an OPEN statement.

D I OPEN /file/
D I OPEN /file/

OPEN // FOR
OPEN // FOR

RANDOM:INP7T ne
RANDOM OUTPUT ne

INPUT ne
OUTPUT ne

D I OPEN /file/ FOR INPUT AS
FILE ne

D I OPEN /file/ FOR INPUT
FILE ne

D I OPEN se FOR INPUT AS ne

D I OUTPUT

D I PAUSE

D I PRINT e1 21D I PRINT e
1
;e

2'
D I PRINT e :e1 2--

D I PRINT ON ne:v ,

D I PRINT ON nel
v v.1' 2,*

ne

Opens a random binary, file for
input or output as file ne.

Enables user to specify the
file name during program
execution.

Opens a file for input as the
named file and attaches it to
unit ne. (ne must be greater
than 2.)

Opens string expression se for
input as ne.

See PRINT..

Causes program execution to halt
and control to return to the NEW-
BASIC coMmand symbol.

Prints the.values ofexpressions,
or Variables. The Comma iS used,
for normalfield output, the
semicolon for packe4 output, and
the Colon for concatenated output.
(WRITE-, TYPE,DISPLAY or opTpur
mayipe lased instead of the word
PRINT.)

Writes the values of the listed
variables on a symbolic or binary
file opened as unit ne.

Writes the values of the listed
variables on a random binary file
designated as unit ne,, starting
at location n e2 on th6 file.

9-7

D I PRINT IN FORM se:e
1,

e2" Prints the values of variables
or expressions in the field for-
mat specified where the string
expression is:

R Free format (decimal or
scientific notation form)

D Indicates position of
digit; zero always printed.

Y Digit; zero replaced by
blank.

Digit; leading zeroes re-
placed by blanks.

Q Left-adjusted number; un-
needed character positions
are suppressed.

Check protect (asterisk
filling)

Floating dollar sign.

Floating sign.

Prints sign if number is
negative (floats).

Prints sign if number is
positive (floats).

. Positions decimal point.

Positions but does not print
decimal point.

Positions exponent (forces
scientific notation).

Space Separates fields in form.

B Prints blanks on output.

Text Prints literally any string
enclosed in primes or quo-
tation marks.

Prints a carriage return.

Prints a comma when not the
leading nOnblank character.

D I READ v
1
1v

2'

D I REM text

9-8

Assigns values obtained from
the DATA list to the listed
variables.

Supplies remarks for program
description. Remarks are not
printed except during LISTing
of the program.

D I RESTORE Restores the DATA list after
the numbers in it have all
been read, allowing it to be
reread by another READ state-
ment.

I RETURN Returns execution to the next
statement in sequence in the
main program after a GOSUB
subprogram or a multiple line
programmer-defined function
has been executed.

STOP Halts program execution. A
direct GOTO statement can be
used to restart execution.

D I TYPE See PRINT,

D I VAR=ZERO

D I WRITE

MATRIX STATEMENTS

D I MAT xl = x

D I MAT x = x *x
2

Sets all variables equal to
zero.

See PRINT.

Replaces matrix xl with matrix

2'

Multiplies matrix xi by matrix
xl. The same matrile name may
n&t appear on both sides of
the equation. Also, the number
of rows in x2 must equal the
number of columns in xl.

Adds matrix xi to matrix x2.
xi and x9 ::Iust have the same
ntimber of rows and columns.

D I MAT x = x
1
- x

2

D I MAT x = x
1

* (ne)

9-9

Subtracts matrix x2 from matrix
xl. xl and x2 must have the
same number of rows and columns.
Matrix x may appear on both sides
of the equation in subtraction
or addition.

Matrix scalar multiplication.

D I MAT x = ZER Sets the working size of the
D I MAT x = ZER (ne

11
ne

2'
...) matrix and sets all the ele-

ments of the matrix to zero.
(This statement dimensions
the matrix as x(ne ne

2'
...).)

D I MAT x = IDN Sets the working size of the
D I MAT x = IDN (ne

1,
ne

2'
...) matrix and sets up the matrix

as an identity matrix. (This
statement dimensions the matrix
as x(ne1' ne 2' . .).)

D I MAT x = CON Sets the working size of the
D I MAT x = CON (ne

1
,ne 2,...) matrix and sets all the ele-

ments of the matrix to one.
(This statement dimensions
the matrix as x(nevner...).)

D I MAT INPUT z Sets the working size of the
matrix. Values are input during
the running of the program.
(Note that ACCEPT or DEMAND may
be used instead of the word
INPUT.)

D I MAT INPUT z(n1:n2,n3:n
4

)

D I MAT INPUT z FROM ne:
z(n1:n2,n3:n4)

D I MAT PRINT z
1'

z 217. .
D I MAT PRINT z -z

1' 2'
D I MAT PRINT z z

1'
-

2'

Sets the working size of the
matrix and dimensions the ar-
ray as specified (n,:n2,n1:nA).
Values are input duting pfogam
execution.

Sets the working size of the
matrix and dimensions the ar-
ray as specified (ni:n2,n3:n4).
Values are input frft a file
designed as unit ne.

Prints the matrices on the term-
inal. Commas, semicolons, or
colons are used in the statement
to determine the form of the out-
put. (Note that WRITE, TYPE,
OUTPUT, or DISPLAY can be used
instead of the word PRINT.)

D I MAT READ z

DATA TYPES

D I COMPLEX v1,v2,...

D I DOUBLE INTEGER v11v21...

D I DOuBLE REAL v ,

1-

D I INTEGER v

D I REAL v v
1 1. .

D I STRING v v 2' ...

SUFFIX MODIFIERS

9-10

Sets the working size of the
matrix. Values are read in
from a data list.

Declares the specified variables
to be in COMPLEX mode.

Declares the specified variables
to be in DOUBLE INTEGER mode.

Declares the specified variables
to be in DOUBLE REAL (double
precision) mode.

Declares the specified variables
to be in INTEGER mode.

Declares the specified variables
to be in REAL mode.

Declares the specified variables
to be in STRING mode. Text is
equivalent to STRING mode.

(Note: A logical expression is considered false if it is
equal to zero and true if it is not equal to zero:)

D I stmt FOR nv=ne
11

ne2"D I stmt FOR nv=ne
1
TO ne

2STEP nel
D I stmt FOR 6w=ne. UNTIL le
D I stmt FOR nv=ne WHILE le

BY ne
2

D I stmt IF le

D I stmt UNLESS le

Causes execution to loop through
a set of operations for a spec-
ified range.of values or until
a logical condition is met. (Add-
itional syntactic forms of FOR are
shown in the PROGRAM STATEMENTS
section.)

Causes the statement to which it
is appended to be executed if
the logical expression le is true.

Causes the statement to which it
is appended to be executed only
if the logical expression i.e.
is false.

D I stmt UNTIL le

D I stmt WHILE le

OPERATING COMMANDS

AGAIN

APPEND /file/

BREAK ln,ln,...

CONTROL7G

DELETE lh, ln-ln

DUMP /file/

EDIT ln

9-11

Causes the statement to which
it is appended to be executed
repeatedly as long as the log-
ical expression le is false.

Causes the statement to which it
is appended to be executed re-
peatedly as long as the expression
le is true.

Repeats the last statement exe-
cuted and resumes program exe-
cution.

Merges the named file and the
current program. When duplicate
line numbers exist, lines in the
named file replace those in the
current program.

Sets breakpoints at the specified
lines.

Used to escape out of program exe-
cution at an INPUT request 'or to
return to the EXECUTIVE from the
NEWBASIC command symbol.

Deletes the specified line or
range.

Creates a core image of the cur-
rent program and stores it in
compiled binary from under the
name specified. DUMP files may
only be executed or 'deleted.
They are executed by issuing
the command EXECUTE /file/ to
the EXECUTIVE command symbol or
by typing just the file name
(/file/) to the EXECUTIVE dash.

Types out the specified line and
makes it the previous line for
editing purposes.

9-12

D EXTRACT ln, ln-ln Deletes all but the specified lines.

EXIT Used to exit from a subsystem.

LIST Lists the current program. Indi-
LIST ln, ln-ln vidual line numbers or ranges of

lines can be specified as para-
meters to the command.

LISTNH Same as list, except that the
LISTNH ln, n-ln heading containing the date,

time, and program name are not
typed at the top of the listing.
(LISTNH may not be abbreviated
as other commands.)

D LENGTH Types the length of the current
program in lines.

D LOAD /file/ Retrieves a previously SAVEd file
and places it in working storage
as the current program. (Same as
OLD)

D MODIFY ln Locates the specified line and
makes it the previous line for
editing purposes. The line is
not typed out.

D NBS Prints OK? Upon confirmation,
deletes all of program and
variables.

NEW /file/ Creates a new file with the name
specified.

D OLD /file/ Retrieves a previously SAVEd file
and places it in working storage
as the current program.

POINTS Lists all breakpoints currently
being used.

D PROCEED Restarts program execution after
a breakpoint.

D QED 'fransfers the current file into
the QED subsystem foE further
editing. Typing a G (or the QED
command SCO) transfers the edited
program back into NEWBASIC.

D RECOMPILE

D RENUMBER
D RENUMBER ln, ln-ln, n

RUN
RUN /file/

9-13

Recompiles a program after cor-
recting an error which caused
NEWBASIC to request a nonexistent
subprogram.

Resequences line numbers in the
current file starting with line
100 and incrementing by 10. The
starting line number, the range
of lines to be resequenced, and
the increment to be used can be
supplied as parameters to the
command.

Begins execution of the current
program or the file named in the
command. All variables are set
to zero when the command is issued.

SAVE /file/ Saves a permanent copy of the
current program on the file
specified.

SCRATCH Deletes the current program but
saves the file name and the con-
tents of variable storage.

D STEP Executes one statement after a
breakpoint and then halts again
(may be abbreviated as S).

D TABS n,n Sets tabs at the specified points
for special tabbing requirements.
Standard tab positions are set at
8, 16, 32, 40, 48, and 56.

D TAPE Appends a file or series of line-
numbered NEWBASIC statements from
paper tape.

UNBREAK Removes all breakpoints.

D UNBREAK ln,ln,... Removes breakpoints from the
specified lines.

WHERE Lists the line number of the next
statement to be executed.

WIDTH n Sets the assumed width of the
terminal carriage to a number
other than 72 columns.

EDITING CONTROL CHARACTERS

Ac

cc

Dc

E
c

Fc

23

Deletes the previous character
(echoes t)

Copies one character

Copies through end of line

Begins or ends insertion (echoes
< or >)

Copies through end of lines; does
not print at terminal.

Copies up to end of line

Tabs to the next tab stop position

Restarts edit, saving changes

Copies up to specified character x.

Restarts edit; does not save changes.

Retypes line to current point.

Skips single character from input
(echoes %)

Copies line to next tab stop.

Accepts next character literally.

Deletes preceding word (echoes \)

Skips characters through specified
character (echoes %)

Skips line to next tab stop
(echoes %)

Copies through specified character x.

9-15

NUMERIC FUNCTIONS

ABS(X) Absolute value of X

INT(X) Integer part of X

MOD(X,Y) X modulo Y

SGN(X) Sign of argument X

DIF(X,Y) Positive difference ABS(X-Y)

EXP(X) Exponential of X

LOG(X) Natural log of X

LGT,LOG10(X) Log, base 10, of X

SQR,SQRT(X) Square root of X

SIN(X) Sine of X

COS(X) Cosine of X

TAN(X) Tangent of X

ARCSIN(X) Arcsine of X

ARCCOS(X) Arccosine of X

ATAN(X) ,ATAN(X,Y) Arctangent of X or of X/Y

SINH(X) Hyperbolic sine of X

COSH(X) Hyperbolic cosine of X

TANH(X) Hyperbolic tangent of X

FIX(X) Integer mode of X (truncates)

FLOAT(I) Floating point mode form of I

SNGL(D) Single precision mode form of D

NUM(X) Random integer from 1 to x

LSH(I,J) Binary left shift I for J positions

RSH(I,J) Binary left shift I for J positions

2 4

IMAG(C) Imaginary part of complex number C

REAL(C) Real part of complex number C

CMPLX(X,Y) Complex number X,Y

CONJG(C) Conjugate of (X,Y) = (X,-Y)

Maximum of arguments

MIN(X,...,Z) Minimum of arguments

WAIT (X) Halts execution for X seconds

POS(I) Reads position of file I

PASS Number of times statement is
PASS (ln) executed.

RESPASS Resets pass counter
RESPASS (ln)

DATE Returns a 12-character string
containing the date and time.

TEL Returns zero if the terminal
input buffer-is empty; other-
wise it returns one.

TIME Reads the system clock in 1/60
of a second units.

STRING FUNCTIONS

INDEX(se
'
se

2
) Position of se2 within sel;

e.g., INDEX("ABC","C") = 3.

LEFT(se,ne) Substring of se, ne characters
long starting from left.

LENGTH(se) Length of se.

RIGHT(se,ne) Substring of se; ne characters
long, starting at right.

SPACE(ne) String ne spaces long.

STR(ne) String of the characters com-
prising ne; e.g., STR(4) = "4".

25

vr,

SUBSTR(se,nevne2)

VAL(se)

9-17

Substring of se; ne.., characters
long, starting at na-lth character.

Numeric value of se, where se must
be a numeric string; e.g., VAL("+8")
= 8.

ASC(se) ASCII binary equivalent of the
first character of se.

CHAR(ne) One-character string which is the
ASCII character whose numeric value
is ne.

CTI(se) Internal binary equivalent of first
character of se.

1TC(ne

CATALYST FUNCTIONS

ICO(R$ A$,K)

1S(R$,A$,K)

IBEF(R$,A$,K,B$,K)

IEQIV(R$,A$,K)

CALL REIN

CALL RRIN

PASS

RESPASS

CALL REP

@NBS

One-character string which is the
character whose internal ASCII
value is ne.

R$ contains the string A$ (K = 0).
R$ contains the word A$ (K = 1).

R$ is the string A$ (K = 0).
R$ is the word A$ (K = 1).

R$ contains A$ before B$.

R$ contains one of the strings in
A$ delimited by commas.

Reinforce.

Really reinforce.

Reset PASS.

Prints "??--PLEASE RESPOND AGAIN"

Li

